If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+12x-98=0
a = 7; b = 12; c = -98;
Δ = b2-4ac
Δ = 122-4·7·(-98)
Δ = 2888
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2888}=\sqrt{1444*2}=\sqrt{1444}*\sqrt{2}=38\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-38\sqrt{2}}{2*7}=\frac{-12-38\sqrt{2}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+38\sqrt{2}}{2*7}=\frac{-12+38\sqrt{2}}{14} $
| X^2-14x-73=0 | | 1.2x+6=4.6x-3 | | 6x+19=59−4x | | (10/12)^(1/3)=x | | 2x+9=37−2 | | 1.2857=x/x-7 | | (t^2-3t+2)=0 | | 3+(5x/2)=10 | | 25x^2-54x-63=0 | | x^2+13x-32/6=0 | | 25x^2-52x-61=0 | | 50=-16t^2+48t+18 | | 5x^2=6x-4 | | 32/3x+1=12/x+1 | | .5x+.25x+3=300 | | 32/12=3x+1 | | 3x+1=2.6667 | | 5500=x+(0.14*x) | | 3x+1=2.666667 | | 5500=x+(0.02*x)+(0.12*x) | | (n+2)*2=n+7 | | 3*(x+-4)=18 | | 5x^2-4x^2-12=0 | | 3n-6=(n-4)*5 | | 5500=x+(0.02x)+(0.12x) | | 30/45=6/a | | 3(n-4)=2n-6 | | 1/v+3v+v^2-5v=7v-56/v^2-5v | | n/12.168=-2 | | (4x-12)/3=4 | | x+(x+25/2)+(x+25/2)=43 | | (x+3)(x-3)=x+3 |